Vibração ou oscilação é qualquer movimento que se repete, regular ou irregularmente dentro de um intervalo de tempo. Na engenharia estes movimentos se processam em elementos de máquinas e em estruturas quando submetidos a ações dinâmicas. Um exemplo universal de oscilações ocorre no movimento de um pêndulo simples, intercalando entre suas posições, suas diferentes formas de energia (cinética e potencial), alternando entre tais energias.
Para realizar uma análise de vibrações é importante verificar os graus de liberdade do sistema mecânico, que consiste em identificar o número mínimo de coordenadas independentes necessárias para descrever o movimento espacial de todas partículas de um sistema em qualquer instante de tempo.
Genericamente os sistemas de vibração são compostos por um meio para armazenar energia potencial (elementos de mola), energia cinética (elemento de massa) e de dissipação de energia (amortecedores). [1]
Grandezas físicas[editar | editar código-fonte]
Os sistemas mecânicos podem ser medidas em aceleração (unidade SI: metros por segundo ao quadrado), velocidade (unidade SI: metros por segundo) ou deslocamento (unidade SI: metros). Para a medição de vibrações em máquinas, são comuns as seguintes unidades:
aceleração: metros por segundo ao quadrado (m/s2), g (1g equivale a, aproximadamente, 9,8065 metros por segundo ao quadrado);
velocidade: metros por segundo (m/s), polegadas por segundo (ips);
deslocamento: micrômetros (1 micrometro equivale a 0,001mm), mils (1 mil equivale a 0,001").
O instrumento comumente utilizado na medição de vibrações é o coletor de dados de vibrações, que utiliza um sistema transdutor de vibrações mecânicas em sinais elétricos conhecido como acelerômetro.
Graus de Liberdade[editar | editar código-fonte]
Em vibrações, o conceito de graus de liberdade consiste na definição no número mínimo de coordenadas independentes requerida para determinar completamente as posições de todas as partes de um sistema a qualquer instante.
Classificação das vibrações[editar | editar código-fonte]
Quanto à excitação[editar | editar código-fonte]
Vibrações livres[editar | editar código-fonte]
São aquelas que ocorrem sem a presença de um agente externo durante o movimento, é considerada uma vibração livre aquela que sofreu um impulso inicial e após ele, o sistema continua a vibrar livremente , por conta própria. Exemplos deste tipo de vibração: puxar uma criança em um balanço e depois soltar (note que se assemelha a ação em um pêndulo), bater um diapasão e deixá-lo tocar.
Vibração forçada[editar | editar código-fonte]
Diz-se que um sistema mecanico sofre vibracao forcada sempre que energia externa é fornecida ao sistema durante a vibracao. A energia externa pode ser fornecida ao sistema por meio de uma forca aplicada ou por uma excitacao de deslocamento imposta. a natureza da forca aplicada ou do deslocamento pode ser definida como harmonica, nao-harmonica mas periodica, nao-periodica ou aleatoria. A resposta de um sistema à excitacao harmonica é denominada como resposta harmonica. A excitacao nao-periodica pode ser de curta ou longa duracao. A resposta de um sistema dinamico a excitacoes nao-periodicas aplicadas repentinamente é denominada como resposta transitoria.
A resposta de um tal sistema, que é a solução da equação do movimento, sob a ação de forças, terá a mesma forma funcional que a força atuante. Isto significa que uma força harmônica produz uma vibração harmônica, uma força periódica produz uma vibração periódica, etc. Os sistemas que serão estudados são representados por equações diferenciais lineares. A solução particular da equação diferencial é, então responsável por representar este movimento. Mas a solução geral é composta de uma solução homogênea e uma solução particular. A solução homogênea representa a parcela transitória da resposta do sistema, aquela que é produzida pelas condições iniciais do movimento
Vibrações amortecidas[editar | editar código-fonte]
É quando qualquer energia é perdida e/ou dissipada na realização da oscilação, sendo por atrito ou qualquer outra força, com isso a energia da vibração se dissipa com o transcorrer do tempo, fazendo com que os níveis vibratórios diminuam progressivamente. Em muitos sistemas físicos, a quantidade de energia dissipada é muito pequena quando comparada a magnitude do sistema, e portanto é desprezada.
Vibrações não amortecidas[editar | editar código-fonte]
Nesse caso tal energia de vibração não se dissipa, isto é, não se perde energia e nem há dissipação da mesma por atrito ou outra resistência durante a vibração, de forma que o movimento vibratório permanece inalterado com o passar do tempo.
Quanto ao conhecimento da força[editar | editar código-fonte]
Vibração determinística[editar | editar código-fonte]
Ocorre quando o valor ou magnitude da excitação, seja ela força ou movimento, aplicada no sistema é conhecida em qualquer instante de tempo.
Vibração aleatória[editar | editar código-fonte]
É aquela que não pode ser prevista, os seus valores não são conhecidos. Como exemplos podemos citar a velocidade do vento e o movimento do solo durante um terremoto.
Quanto aos diversos elementos[editar | editar código-fonte]
- Vibração linear
Ocorre quando todos os componentes básicos do sistema (massa, mola e amortecedor) se comportam de maneira linear, o que não ocorre com a mola depois de uma certa deformação, e portanto passa a possuir um comportamento não linear.
- Vibração não linear
Quando qualquer elemento se comporta de maneira não linear no sistema, temos a vibração não linear, e portanto teremos que lidar com equações diferenciais mais complexas de se resolver e de análises melhor desenvolvidas, cujo principio da superposição não é válido como para o caso de vibrações do tipo linear. Todo sistema tende a comportar-se não linearmente com o aumento da amplitude, como no caso da mola já mencionado.
Forças de excitação[editar | editar código-fonte]
Um sistema mecânico ou estrutural sofre vibração forçada sempre que energia externa é fornecida ao sistema durante a vibração. A energia externa pode ser fornecida ao sistema por meio de uma força aplicada ou por uma excitação de deslocamento imposta. A natureza da força aplicada ou da excitação de deslocamento pode ser da natureza harmônica, não harmônica mas periódica, não periódica ou aleatória. A resposta de um sistema à excitação harmônica é denominada resposta harmônica. A excitação não-periódica pode ser de curta ou longa duração. A resposta de um sistema dinâmico a excitações não-periódicas aplicadas repentinamente é denominada resposta transitória. [1]
Força harmônica[editar | editar código-fonte]
A vibração produzida por uma máquina rotativa desbalanceada, as oscilações de uma chaminé alta provocadas por emissão de vórtices (redemoinhos) sob vento constante e o movimento vertical de um automóvel sobre a superfície senoidal de uma estrada são exemplos de vibração excitada harmonicamente.
Considere a resposta dinâmica de um sistema com um grau de liberdade (física) sob excitação harmônica da forma ou ou .
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Onde é a amplitude, é a frequência e é o ângulo de fase da excitação harmônica. O valor de depende do valor de em t=0 e normalmente é considerado zero. Sob uma excitação harmônica, a resposta do sistema também será harmônica. Se a frequência de excitação coincidir com a frequência natural do sistema, a resposta do sistema também será harmônica. Se a frequência de excitação coincidir com a frequência natural do sistema, a resposta do sistema será muito grande. Essa condição conhecida como ressonância , deve ser evitada, para impedir falha do sistema. [1]
- Força harmônica pelo desbalanceamento rotativo[1]
Massas desbalanceadas em máquinas rotativas são grandes causadoras de vibração em vários casos de engenharia, como exemplo mais clássico as rodas de um carro que quando estão desbalanceadas causam trepidações no veículo. Um sistema é dito desbalanceado quando o centro de massa desse sistema não coincide com seu centro de rotação. Uma representação simplificada dessa situação pode ser visualizada na figura ao lado. A máquina possui massa e há uma outra massa desbalanceada a uma distância e do seu centro de rotação que é denominada excentricidade. Esse sistema está acoplado a uma mola de rigidez e a um amortecedor viscoso de constante de amortecimento . Podemos relacionar a rotação dessa massa desbalanceada a uma força centrífuga . Essa força pode ser decomposta em componentes horizontal que será anulada pelo anteparo fixador dessa máquina, como uma parede, e uma componente vertical que agirá sob o conjunto mola-amortecedor e o fará vibrar. Para esse fenômeno podemos aproveitar dos resultados de outros fenômenos de vibração e descrever a solução particular . Sendo a amplitude da vibração, a frequência de oscilação da massa desbalanceada e o ângulo de fase. Os valores de e são
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Equação de movimento[editar | editar código-fonte]
Se uma força agir sobre um sistema massa-mola viscosamente amortecido, a equação de movimento pode ser obtida pela segunda lei de Newton: .
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Visto que essa equação é não-homogênea, sua solução geral é dada pela soma da solução homogênea com a solução particular . A solução homogênea, que é a solução da equação homogênea representa a vibração livre do sistema, na qual desaparece com o tempo sob cada uma das condições de amortecimento (subamortecido, amortecido crítico e superamortecido) e sob todas as condições iniciais. Assim, a solução geral da equação obtida pela segunda lei de Newton reduz-se a particular , que representa a vibração em regime permanente. O movimento em regime permanente está presente, contanto que a função forçante esteja presente. [1]
Podemos perceber que desaparece e torna-se após algum tempo ( na Figura 2). A parte do movimento que desaparece devido ao amortecimento (a parte da vibração livre) é denominada transitória. A taxa à qual o movimento transitório se degrada depende dos valores dos parâmetros do sistema , e .
Força periódica[editar | editar código-fonte]
Excitação que se repete em certo período, porém com intensidades diferentes. Um exemplo prático são motores de combustão interna. Se a força for periódica, mas não-harmônica, ela pode ser substituída por uma soma de funções harmônicas por da expansão da série de Fourier. Usando o princípio da superposição, a resposta do sistema pode ser determinada pela superposição das respostas às funções forçantes harmônicas individuais.[1]
De acordo com a teoria desenvolvida pelo matemático e físico francês Jean Baptiste Joseph Fourier, qualquer função periódica F(t), com período T, pode ser representada por uma série infinita da forma abaixo:
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
onde e onde os coeficientes , , e são dados pelos cálculos a seguir
Os coeficientes , e , são chamados de coeficientes de Fourier. Dessa forma, a equação de movimento para sistemas excitados por uma força desse tipo pode ser expressa como
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Força transitória[editar | editar código-fonte]
Excitação caracterizada por uma liberação de energia grande em um intervalo curto de tempo. Inúmeros exemplos descrevem este tipo de força: explosão, impacto, etc
Força aleatória[editar | editar código-fonte]
São forças de excitação que não descrevem um padrão determinístico que possa ser definido por uma equação. Para tratar sistemas excitados por forças aleatórias é necessário utilizar métodos estatísticos. Fenômenos aeroelásticos são exemplos de sistemas excitados por forças aleatórias, como forças em asas de aviões, ventos em colunas de pontes, etc.
Análise de vibração[editar | editar código-fonte]
Um sistema oscilatório é um sistema cujas variáveis de entrada e de saída dependem do tempo. Analisando portanto, as respostas de um sistema depende das condições iniciais impostas sobre ele. Na prática, os problemas encontrados de vibrações são muito complexos, necessitando de ferramentas computacionais para resolve-los e também ainda assim, fica difícil, detalhar completamente o modelo. Com isso, somente as características mais importantes são consideradas na análise. [2]
Os testes de vibração são realizados pela introdução de uma função de forças em uma estrutura, geralmente com algum tipo de agitador.[3]Em alternativa, um DUT (dispositivo sob teste) está ligado a "mesa" de um agitador. Para frequências relativamente baixas, forçando, são utilizados servo-hidráulicos (electro) agitadores são usados. Para frequências mais altas, são utilizados agitadores eletrodinâmicos. Geralmente um ou mais pontos de controle localizados no lado DUT de um dispositivo elétrico, são mantidos a uma aceleração especificada.[4]Outros pontos "de resposta" apresentam nível máximo de vibração (ressonância) ou nível mínimo de vibração (anti-ressonância). É normalmente preferível ativar anti-ressonância para evitar um sistema de se tornar muito ruidoso, ou para reduzir a tensão em certas partes de um sistema devido a modos de vibração causados por específicas frequência de vibração.[5] Dois tipos típicos de teste de vibração são os testes senoidais aleatórios . Os testes senoidais (uma frequência de cada vez) são realizados para examinar a resposta estrutural do dispositivo sob teste (DUT). Um teste aleatório (todas as frequências de uma só vez) é geralmente considerado para replicar mais de perto um ambiente do mundo real, tais como insumos caminhos para um automóvel em movimento. A maioria dos testes de vibração são conduzidos num único eixo DUT de cada vez, embora a maior vibração do mundo real ocorre em vários eixos simultaneamente. MIL-STD-810G, lançado no final de 2008, Test Method 527, exige testes de excitação múltipla. Dispositivos projetados especificamente para rastrear ou gravar vibrações são chamados vibroscópios.
Sistemas oscilatórios com dois graus de liberdade[1][editar | editar código-fonte]
Definição[editar | editar código-fonte]
Até aqui foram tratados sistemas com vibratórios em que apenas uma coordenada de deslocamento definia totalmente a vibração. Em termos analíticos, a vibração ficou caracterizada pela solução de uma única equação diferencial do tipo ordinária na variável independente . Outra característica importante do que foi visto em sistemas com um grau de liberdade é a existência de uma frequência natural que desempenha uma papel importante tanto na vibração livre quanto na vibração forçada.
A descrição de sistema com dois graus de liberdade implica em dizer que são necessárias duas coordenadas independentes para caracterizar o sistema vibratório. Isso implica na existência de duas equações de movimento associado, um para cada massa. De modo geral, essas equações estão na forma de equações diferenciais acopladas, ou seja, cada equação envolve todas as coordenadas.
Modos de vibração[editar | editar código-fonte]
Durante a vibração livre, um sistema com dois graus de liberdade tem dois modos normais de vibração, correspondentes as duas frequências naturais, nas quais as amplitudes dos dois graus de liberdade são relacionadas de modos específicos, denominado modo normal, modo principal ou modo natural de vibração.
Simplificação[editar | editar código-fonte]
A configuração de um sistema com dois graus de liberdade pode ser especificada por um conjunto de coordenadas independentes, denominadas coordenadas generalizadas. Dado que as equações de movimento de um sistema de dois graus de liberdade geralmente são acopladas, de forma que cada equação envolve todos os parâmetros, é sempre possível determinar um conjunto particular de coordenadas de modo que cada equação de movimento contenha apenas uma coordenada. Assim, as equações de movimento se tornam não acopladas e podem ser resolvidas de forma individual. Tal conjunto é denominado coordenadas principais.
Equação de Movimento para Vibrações Forçadas[1][editar | editar código-fonte]
Se considerarmos um sistema massa-mola com amortecedor viscoso e com dois graus de liberdade como mostra a figura ao lado.
O movimento desse sistema será descrito pelas coordenadas e , que definem as posições das respectivas massas e seja qual for o instante de tempo tendo as posições de equilíbrio como referência. Os respectivos diagramas de corpo livre das massas e podem ser representados conforme o diagrama de corpo livre.
Ao aplicarmos a segunda lei de Newton para cada massa teremos:
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Pode-se perceber que a equação possui termos que envolvem e que a equação também possuirá termos que envolvam . O significado disso é que essas equações representam um sistema de duas EDOs de segunda ordem interligadas. Dessa forma devemos esperar que o movimento de exerça influência em e que o movimento de também influencie no movimento de . As equações e podem ser escritas matricialmente da forma:
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
sendo que , e são chamadas respectivamente de matriz de massa, amortecimento e rigidez
e são denominados os vetores de deslocamento e força, são representados por:
e
Pode-se perceber que as matrizes , e matrizes quadradas de ordem 2 e que seus elementos são respectivamente, as massas, os coeficientes de amortecimento e as constantes de rigidez das molas ilustrados no problema. Também podemos afirmar que as matrizes são simétricas, e que suas transpostas são iguais as próprias matrizes
Pode-se observar que as equações e deixam de ser independentes apenas quando que implicaria que as massas e não estão conectadas. Para esse caso, as matrizes , e passam a ser diagonais. A solução das equações e envolve quatro constantes de integração, sendo duas para cada equação.
Normalmente, os deslocamentos e as velocidades iniciais das duas massas são tomados como:
Determinação das frequências naturais e dos modos de vibração[1][editar | editar código-fonte]
Primeiramente é necessário determinar as frequências naturais do sistema. Assumindo que a solução é da forma
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
em que é um vetor de constante a se determinar, é a frequência natural que queremos determinar e . Temos que representa um movimento harmônico desde que . Dessa forma, substituindo na equação de movimento do sistema encontramos
em que e são as matrizes de massa e de rigidez respectivamente. Podemos dividir os dois lados da equação por uma vez que o termo para qualquer valor de . Obtemos assim a equação
Para que a equação acima possua uma solução não trivial temos que a matriz deve ser singular e portanto
calculando o determinante acima encontramos a seguinte equação
se considerarmos que a variável é teremos uma equação de segundo grau e que apresenta duas raízes e que são as frequências naturais do sistema.
Uma vez obtido as frequências naturais pode-se resolver as equações abaixo a fim de encontrar os modos de vibração e
Sistemas oscilatórios com vários graus de liberdade[1][editar | editar código-fonte]
Definição[editar | editar código-fonte]
A partir de agora serão considerados sistemas vibratórios com mais de dois graus de liberdade. É uma extensão da exposição para sistemas caracterizados por mais de duas coordenadas generalizadas. A vibração será definida pela solução de um sistema de equações diferenciais ordinárias na variável independente . Em geral, será conveniente a utilização de matrizes para o tratamento do problema.
O conceito de graus de liberdade está associado aos possíveis deslocamentos que um conjunto de corpos acoplados pode realizar no espaço físico. Assim, um ponto material totalmente livre pode efetuar deslocamentos nas três direções do espaço; tem, portanto, três graus de liberdade, que coincidem com o número de coordenadas necessárias para definir um deslocamento finito do ponto.
Chamam-se de vínculos as restrições impostas ao deslocamento dos corpos móveis. Os vínculos sempre diminuem os graus de liberdade. Assim, se o deslocamento do ponto for restrito a um plano, o número de graus de liberdade passará a ser dois e, se for restrito a uma reta, terá apenas um grau de liberdade. É evidente que, se o ponto material por ação vincular não puder sofrer deslocamentos, então não terá nenhum grau de liberdade.
Sistemas mecânicos em sua maioria podem ter um número infinito de graus de liberdade. Para cada grau de liberdade existe uma única equação de movimento, sendo cada equação obtida por meio da segunda lei de movimento de Newton, no entanto se torna mais conveniente deduzir as equações de movimento de um sistema com muitos graus de liberdade utilizando equações de Lagrange. Além disso, cada equação pode ser considerada acoplada, ou seja, cada uma envolve mais que uma coordenada, significando que estas não podem ser resolvidas individualmente, apenas simultaneamente.
Tendo um sistema com n graus de liberdade, obtém-se n frequência naturais, cada uma associada a sua própria forma modal. Além disso a medida que o número de graus de liberdade aumenta, a solução da equação característica se torna mais complexa. Para calcular o número de graus de liberdade, pode-se utilizar o seguinte método:
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Modelagem[editar | editar código-fonte]
Adota-se métodos para aproximar um sistema contínuo em um sistema com vários graus de liberdade, dos quais, dois são listados a seguir:
- Sistema de massa concentrada: consiste em substituir a massa ou inércia distribuída por um número finito de massas concentradas ou corpos rígidos. Tais massas estão ligadas por elementos elásticos e amortecedores, ambos de massa desprezível. Nota-se que quanto maior o número de massas concentradas, maior será a precisão da análise, pois assim ocorre maior aproximação do real.
- Método do elemento finito: envolve substituir a geometria do sistema por um grande número de elementos infinitesimais, onde novamente, quanto maior o número de elementos, maior a precisão.
Equação de Movimento[editar | editar código-fonte]
Aplicando a segunda lei do movimento de Newton para um sistema massa-mola-amortecedor com n graus de liberdade obtém-se a seguinte equação de movimento:
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Onde e são denominados de matrizes de massa, amortecimento e rigidez, respectivamente. Tais matrizes são dadas por:
Se a matriz de rigidez tem no mínimo um termo não nulo fora da sua diagonal, diz-se que o sistema está estaticamente acoplado. Caso esta situação ocorra na matriz de massa, tem-se que o sistema é dinamicamente acoplado. Se ambas as matrizes de massa e de rigidez tiverem termos não-zero fora da diagonal, o sistema é acoplado estática e dinamicamente.
Além disso e são os vetores aceleração, velocidade, deslocamento e força respectivamente, que atuam no sistema a ser analisado, e estes são dados por:
Importância do estudo de vibrações[editar | editar código-fonte]
A maioria das atividades humanas envolve vibrações de uma forma ou de outra, como exemplo a respiração está associada a vibração dos pulmões, nas industrias o desbalanceamento de motores está associado com problemas de vibração, vibrações nas pás de turbinas que causam prejuízos abissais. Além disso a vibração causa o desgaste mais rápido do material, seja por fadiga ou outro tipo de mecanismo. Outro problema que pode ser causado por vibração seria o ruido de alguma máquina, que pode ocasionar em problemas sérios a saúde e as condições ergonômicas das pessoas.
Por outro lado, as vibrações podem também ser usadas a nosso favor, como em peneiras, máquinas de lavar, compactadores, esteiras transportadoras, relógios e também é empregada na análise de sistema de tremores sísmicos, onde com base nesses estudos é possível prever o grau de vibração de algum tremor.
A análise de vibrações tem fundamental importância para as mais diversas áreas da engenharia. A análise de vibrações pode ajudar na manutenção preditiva de máquinas, construção de grandes obras de engenharia civil, estudos de resistência de materiais e nas mais diversas áreas.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS].
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.
O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.
Com isto pode-se dividir a física em quatro grandes fases:
a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.
teoria da relatividade categorial Graceli
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
= entropia reversível
matriz categorial Graceli.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões.
= entropia reversível
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico, e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].